Improved Subsampled Randomized Hadamard Transform for Linear SVM
نویسندگان
چکیده
منابع مشابه
Improved matrix algorithms via the Subsampled Randomized Hadamard Transform
Several recent randomized linear algebra algorithms rely upon fast dimension reduction methods. A popular choice is the Subsampled Randomized Hadamard Transform (SRHT). In this article, we address the efficacy, in the Frobenius and spectral norms, of an SRHT-based low-rank matrix approximation technique introduced by Woolfe, Liberty, Rohklin, and Tygert. We establish a slightly better Frobenius...
متن کاملImproved Analysis of the subsampled Randomized Hadamard Transform
This paper presents an improved analysis of a structured dimension-reduction map called the subsampled randomized Hadamard transform. This argument demonstrates that the map preserves the Euclidean geometry of an entire subspace of vectors. The new proof is much simpler than previous approaches, and it offers—for the first time—optimal constants in the estimate on the number of dimensions requi...
متن کاملFaster Ridge Regression via the Subsampled Randomized Hadamard Transform
We propose a fast algorithm for ridge regression when the number of features is much larger than the number of observations (p n). The standard way to solve ridge regression in this setting works in the dual space and gives a running time of O(np). Our algorithm Subsampled Randomized Hadamard TransformDual Ridge Regression (SRHT-DRR) runs in time O(np log(n)) and works by preconditioning the de...
متن کاملImproved Low-rank Matrix Decompositions via the Subsampled Randomized Hadamard Transform
We comment on two randomized algorithms for constructing low-rank matrix decompositions. Both algorithms employ the Subsampled Randomized Hadamard Transform [14]. The first algorithm appeared recently in [9]; here, we provide a novel analysis that significantly improves the approximation bound obtained in [9]. A preliminary version of the second algorithm appeared in [7]; here, we present a mil...
متن کاملUnhealthy Detection in Livestock Texture Images using Subsampled Contourlet Transform and SVM
In this paper a new split and merge algorithm based on Contourlet transform and Support Vector Machine (SVM) is presented for automatic segmentation and classification of unhealthy in Livestock Texture Images. We focused on the liver textural images of livestock to verify if there is any unhealthy on its textural image. The Contourlet transform is used because it allows analysis of images with ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the AAAI Conference on Artificial Intelligence
سال: 2020
ISSN: 2374-3468,2159-5399
DOI: 10.1609/aaai.v34i04.5880